

SIJ is a vertically integrated holding company, the leading steel manufacturer in Slovenia, and one of the largest stainless and special steel manufacturers in Europe. SIJ Group consists of the two largest steel companies in Slovenia (SIJ Acroni and SIJ Metal Ravne), other manufacturing and processing companies (SIJ Ravne Systems, SIJ Elektrode, SIJ SUZ), specialized service and sales centers across Europe and the USA, and companies for scrap steel collection and sales.

www.sij.si

• • •

INCREASE YOUR PRODUCT'S LIFE SPAN

The highest steel quality, based on world class production equipment and more than 400 years of experience in steel making

• • •

DECREASE MACHINING COSTS

Narrow dimensional tolerances, exceeding international standards

OPTIMIZE YOUR MANUFACTURING PROCESSES

Extensive range of mechanical treatment possibilities to find the best fit for your production process

• • •

EXCEED YOUR CUSTOMERS' EXPECTATIONS

Strong in-house R&D Department and broad applied knowledge helps you get the best solutions for your customers' needs

SIDUR is a highly wear-resistant steel of extreme hardness, strength, and toughness. This makes it durable and suitable for use in the most difficult environments where there is a risk of abrasion caused by contact with hard minerals and other abrasive materials. SIDUR steel is more durable than structural steel, resulting in products with a life span up to three times longer. In combination with its high wear-resistance, it also offers formidable weldability and machinability.

SIDUR - EXTREME RESISTANCE TO ABRASIVE WEAR

SIDUR steels are produced within a hardness range from 220 to 540 HBW. Compared to non-alloyed structural steels, SIDUR plates have higher durability which results in a lifespan of your products up to three times longer.

The unique combination of high hardness, high strength and good toughness improves bending, welding, and machining properties and deformation levels. SIDUR is a material well suited to a wide variety of applications where it will be exposed to heavy wear by hard minerals and other abrasive materials.

BETTER PERFORMANCE AT LOWER THICKNESS

\$355	
SIDUR 400	
SIDUR 500	

Thicknes

UP TO THREE TIMES LONGER LIFESPAN OF PRODUCTS

SIDUR 400	
\$355	

Years

SPECIAL SIDUR GRADES

SIDUR 350 HI TEMP AND SIDUR 350 MACHINABILITY +

- heat resistance in addition to abrasion resistance

SIDUR fine grain steel combines high resistance to mechanical wear and heat resistance up to 600°C with good weldability and machining.

SIDUR 3401

- increasing hardness with exposure to wear

The virtue of high manganese steel SIDUR 3401 (Hadfield steel, X120Mn12) is high wear resistance and a work-hardening effect on the steel structure. With exposure to wear, hardness can be increased by three times compared to its condition at delivery.

SIDUR APPLICATIONS

Bulldozers, earth-moving crusher jaws, shredder plates, shovel buckets, dump trucks, industrial trucks, lorries, containers for iron ore, machine parts and tools for mineral extraction (mining), metal working tools – cutting edges, knives, gears, bearings, loaders, buckets, slurry pipe systems, guiding and shifting plates, liners for shot blasting units, shot blasting equipment.

CHEMICAL COMPOSITION

LADLE ANALYSIS	C max	Si max	Mn max	S max	P max	Cr max	Ni max	Mo max	B max
SIDUR 250	0,18	0,6	1,6	0,001	0,012	1,2	0,5		
SIDUR 300	0,22	0,6	1,6	0,003	0,012	1,3	0,5		
SIDUR 400	0,26	1,0	1,5	0,002	0,012	0,8	0,5	0,5	0,004
SIDUR 450	0,27	1,0	1,5	0,002	0,012	0,8	0,5	0,5	0,004
SIDUR 500	0,29	1,0	1,5	0,002	0,012	1,0	0,5	0,5	0,005
SIDUR 350 hi temp	0,12	0,5	1,8	0,001	0,015	2,1	1,3	0,25	
SIDUR 3401	1,3	0,4	13	0,001	0,02	0,55			

MAX. CARBON EQUIVALENT CEV = C+MN/6+(NI+CU)/15+(CR+MO+V)/5

Grade\Thickness range	8-25mm	25-40mm	Above 40mm
Sidur 400	max 0,46	max 0,59	max 0,60
Sidur 450	max 0,49	max 0,59	max 0,74
Sidur 500	max 0,59	max 0,64	max 0,75

HARDNESS HBW AND DELIVERY CONDITION

Hardness (HBW)	8-25mm	25-40mm	Above 40mm			
SIDUR 250	SIDUR 300	SIDUR 400	SIDUR 450	SIDUR 500	SIDUR 350 hi temp	SIDUR 3401
220-277	260-340	360-440	420 - 477	460 - 540	Min. 300HB	Max. 240HB
Rolled	Rolled	Quenched and	Quenched and	Quenched and	Normalized	Solution
		tempered	tempered	tempered		annealed

TYPICAL MECHANICAL CHARACTERISTICS AT ELEVATED TEMPERATURES FOR SIDUR 350 HI TEMP

Temperature (°C)	Rp0.2 (Mpa)	Rm (Mpa)	A50 (%)
500	757	888	13
400	903	1080	17,5
300	934	1140	17
200	918	1060	11
100	907	1050	11,5
Room	911	1125	14

MECHANICAL PROPERTIES*

	Yield strength	Tensile strength	Elongation	Charpy	
	(minimal) Re (MPa)	Rm (MPa)	(minimal) A5 (%)	V-Notch	
SIDUR 250	750	940	15	-20°C 30J	SIDUR 350 hi temp
SIDUR 300	820	1030	15	-20°C 30J	Min. 300HB
SIDUR 400	900	1300	12	-20°C 30J	Normalized
SIDUR 450	1100	1450	10	-20°C 30J	
SIDUR 500	1300	1650	8	-20°C 25J	
SIDUR 350 hi temp	660	1000	10	-20°C 27J	
SIDUR 3401	350	800-1000	30		

Typical values for 15 mm plate thickness

^{*} orientational value

DIMENSIONAL RANGE

	Thickness (mm)
SIDUR 400	110
SIDUR 450	100
SIDUR 500	
SIDUR 250	60
SIDUR 300	
SIDUR 600	
X12	
	8
	5
Width (mm) 2500	

	Thickness (mm)*	Width (mm)*	Length (mm)
SIDUR 250	8-60	1000-2500	2000-12000
SIDUR 300	8-60	1000-2500	2000-12000
SIDUR 400	8-110	1000-2500	2000-12000
SIDUR 450	8-100	1000-2500	2000-12000
SIDUR 500	8-100	1000-2500	2000-12000
SIDUR 350 hi temp	6-60	1000-2500	2000-12000
SIDUR 3401	2-60	1000-2500	2000-12000

^{*}According to agreement

TOLERANCES

On request, narrower thickness, shape, length, width and flatness tolerances as according to EN 10 029 are available.

SURFACE PROPERTIES

According to EN 10 163/A-1.

Anticorrosive primer red oxide color on request.

SIDUR IN A WORKSHOP

BENDING

		R/t		W/t		
	Thickness	Transverse	Longitudinal	Transverse	Longitudinal	Springback
SIDUR 400	8 ≥ t < 20	3,0	4,0	10,0	10,0	9-13
	t ≥ 20	4,5	5,0	12,0	12,0	
SIDUR 450	8 ≥ t < 20	4,0	5,0	10,0	12,0	11-18
	t ≥ 20	5,0	6,0	12,0	14,0	
SIDUR 500	8 ≥ t < 20	5,0	6,0	12,0	14,0	12-20
	t ≥ 20	7,0	8,0	16,0	18,0	

Minimum recommended punch radius (R) and die opening width (W) for plate thickness (t) when the plate is being bent to 90° along the direction of rolling and at right angles to the direction of rolling – and also the corresponding springback.

CUTTING

SIDUR can be cut using thermal cutting processes or by using cold methods of shearing, water-jet etc. When cutting thicker plates of SIDUR, especially when using oxy-fuel, special care must be taken before and after the cutting process to prevent (delayed) cut edge cracking. Preheating the plates is one of most important solutions before cutting. Additional post heating of the cut edge is also carried out where necessary to reduce residual stresses. Cooling, where possible, is done by pilling even if the steel was not preheated.

Method of cutting:	submerged plasma dry-plasma / oxy-fuel		laser	water jet		
Method of preheating:	-	- blow-pipe system / furnace / torch /		-		
		warm pilling / electric heating mats				
Heating temperature	Min. 3 min/mm at soak	Min. 3 min/mm at soaking temperature		-		
Soaking time in minutes per mm:	-	- Min. 3 min/mm at temperature		-		
Cooling method:	insulating blanket / war	insulating blanket / warm pilling / furnace				
If blow-pipe system is used temperature measurement should be done on the opposite side of the plate.						

WELDING SIDUR

VELDING 3II										
Welding	Welding	EN Designation								
process or	materials /	(EN 499, EN 757, EN 1600,	SIJ Elektrode	SIJ Acro	oni					
procedure*	Welding process	EN 440, EN 14700 EN 758,	Designation	Wear R	esistant l	Plate Gra	de			
		EN 12071, EN 756, EN 760)								
				SIDUR	SIDUR	SIDUR	SIDUR	SIDUR	SIDUR	SIDUI
				250	300	400	450	500	350 hi	3401
									temp	
Welding	SAW Flu•es /	SA FB 1 55 AC H5/S 3	FBTT/EPP3	•	•	•	•	•	•	
	Wires	SA FB 1 55 AC H5	FBTT/ Filtub 132			•	•	•	•	
			FBTT/Filtub 138			•	•	•	•	
Welding *	Electrodes	E 42 4 B 32 H5	EVB 50	•	•	•	•			
	MMAW	E 42 6 B 42 H5	EVB 55	•	•	•	•	•		
	Flu• cored wires	T 46 4 M M 1 H5	Filtub 12M	•	•	•	•			
	FCAW	T 42 4B C3 H5 /	Filtub 12B	•	•	•	•	•		
		T 42 4B M3 H5								
	Wires GMAW,	G 42 4 C/M G 3 Si1	VAC 60	•	•	•	•			
	GTAW	G 46 4 C/M G 4 Si1	VAC 65	•	•	•	•			
Welding **	Electrodes									
	MMAW MMAW	E 692MN2NiCrMoB42	EVB 75		•	•	•	•		
	trodes									
	Electrodes	E 692MN2NiCrMoB42	EVB 80		•	•	•	•	•	
	MMAW	E 89AMn2NiCrMoB42	EVB 100			•	•	•	•	
		T 69 4 Mn 2Ni Cr Mo M	Filtub 32M			•	•	•	•	
	Flu• cored wires	1 H5								
	FCAW	T 69 6 Mn2NiCrMo B M	Filtub 32B			•	•	•	•	
		(C)3 H5								
	Wires GMAW,	Mn3Ni1CrMo	MIG 75		•	•	•	•	•	
	GTAW									
Hardfacing		Fe 1	E DUR 250	•						
	Electrodes		E DUR 300		•					
	MMAW	Fe 2	E DUR 500					•		
		Fe 3	E DUR 400			•	•			
		Fe 8	E DUR 600						•	
		Fe 1	Filtub DUR 3	•	•					
			Filtub DUR 5		•	•	•			
	Flu• cored wires	Fe 7	Filtub DUR 12			•	•			
	FCAW	~Fe 3	Filtub DUR 15/					•	•	
			DUR16							
		E 307 T0-1	FilCORD 307							•
Interlayer	Electrodes	E 18 8 Mn B 22	Ino• B 18/8/6	•	•	•	•	•		•
	MMAW									
	Wires GMAW,	G 18 8 Mn	MIG/ TIG	•	•	•	•	•	•	•
	GTAW		18/8/6Si							
	SAW Flu•es /	SA AF 2 54 DC/ S 18 8 Mn	FB33/ EPP 18/8/6	•	•	•	•	•	•	
	Wires									

RECOMMENDED WELDING PROCEDURES

- 1. For SIDUR steels in combination with unalloyed materials types S355, we recommend welding materials marked with *
- 2. For welding SIDUR steels with each other, for root and filling passes we recommend under-matching welding materials marked with* or fine-grained welding materials marked with **, to achieve higher hardness on the surface, cover layers should be welded with suitable hardfacing welding materials.
- 3. For cladding on SIDUR steels we recommend buffer layer with austenitic 307 (18/8/6) welding materials, without preheating and cover layers with suitable welding materials

MAXIMUM RECOMMENDED PREHEAT TEMPERATURE

Maximum recommended preheat temperature [°C]																
	8	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80
SIDUR 400	Roor	n			75				100	175						
SIDUR 450	Roor	Room			125				150							
SIDUR 500	Roor	n		175			200									

* for thicknesses up to 13mm | Data from the table is applicable to single plate thickness when welding with a heat input of 1.7 kJ/mm. | The consumables determine the preheating temperature if its carbon equivalent is higher than that of the plate | Room temperature is approx 20°C

MAXIMUM RECOMMENDED INTERPASS TEMPERATURE

Maximum recommended interpass temperature [°C]						
SIDUR 400	225					
SIDUR 450	225					
SIDUR 500	225					

SIJ Acroni SIDUR steels have good weldability. When welding thin plates, preheating is normally not necessary (if the ambient temperature is > 5°C).

PREHEATING IS RECOMMENDED

- At outside temperatures below 5°C;
- At thicknesses above 20 mm.

In these cases the recommended preheat temperature during infusions should not exceed 200°C as this can cause reduction in hardness. Welding should be carried out immediately after the welding edges have been finished, to avoid surface contamination.

Consumables must be properly stored, always according to the manufacturer's recommendations. Basic coated electrodes should be dried before welding.

In repair welding and joint welding, sharp edges should be avoided and the first layer of weld material should be of thinner dimensions to make sure the energy intake is as low as possible.

Recommended welding consumables are produced by SIJ Elektrode.

^{*} All welding instructions are recommendations only.

SIDUR CASE STUDY

PERFORMANCE and DURABILITY in PERFECT BALANCE

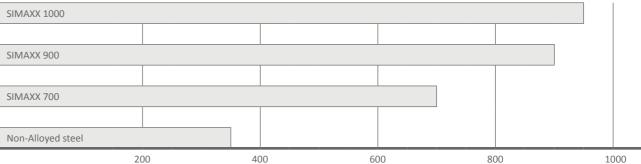
INDUSTRIAL KNIVES MADE OF SIDUR WEAR RESISTANT STEEL

"Where extreme wear on knives and other components is required, the choice of appropriate material is crucial. SIDUR, viewed from the perspective of mechanical treatment, can be easily worked with. SIDUR's excellent plate flatness and narrow tolerances allow us to omit surface treatment for some types of industrial knives and wear parts – saving time and money.

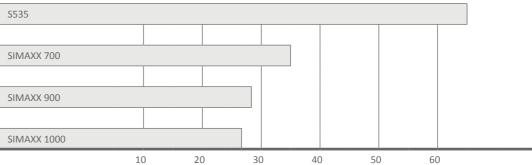
According to our measurements the lifetime of parts produced using SIDUR and SIDUR hi temp is up to three times longer in comparison to other steels. To avoid abrasive wear on industrial knives and wear parts, we recommend welding on parts which are most often exposed. Using SIDUR enables us to boost the performance of our clients."

Stanko Ravlan, *Production Manager, Ravne Knives.*

SIMAXX



SIMAXX is a high-strength steel that makes structures lighter; it is tough and has a homogeneous structure – properties that deliver optimal results. Its extensive shaping possibilities make SIMAXX steel ideal for use in a wide range of industries.


Compared to unalloyed structural steel, SIMAXX achieves better results at lower thicknesses, making elevators, vehicles and similar products lighter and able to carry more weight. The thinner plates are also less demanding to weld, thus cutting costs, improving the work process, and increasing your productivity.

In comparison to non-alloyed structural steel grades, the use of SIMAXX gives better results at lower thickness. Lifting equipment and transport vehicles become lighter and can carry more. The thinner plates require less demanding welding, resulting in lower costs of production.

Yield strenght comparison

Same strenght at lower thickness

SIMAXX APPLICATIONS

Fork lifts, excavator buckets, loader buckets, rippers, wind power and offshore cranes, wind power and offshore towers, ship cranes, forestry machines, bridges, light building structures, mining buckets, mining shovels, mining trucks, polygrabs, refuse vehicles, special trailers (heavy loads), mobile cranes, telescopic booms, pipes, mobile bridges.

CHEMICAL COMPOSITION

LADLE ANALYSIS	C max	Si max	Mn max	S max	P max	Cr max	Ni max	Mo max	B max
SIMAXX 700	0,18	0,5	1,5	0,002	0,012	1	0,80	0,45	0,005
SIMAXX 900	0,18	0,5	1,5	0,002	0,012	1	0,50	0,5	0,005
SIMAXX 1000	0,19	0,5	1,6	0,002	0,012	1,2	0,50	0,6	0,005

MECHANICAL PROPERTIES

	Yield strength (minimal) Re (MPa)	Tensile strength Rm (MPa)	Elongation (minimal) A ₅ (%)
SIMAXX 700	690	770-940	14
SIMAXX 900	890	940-1100	11
SIMAXX 1000	960	1000-1150	10

Values valid for plates up to 50 mm in thickness. According to EN 10025-6 (2004) + A1 (2009)

IMPACT PROPERTIES

	Test temperature [°C]	Impact energy Charpy – V, transverse (min) [J]
Q	-20	27
QL	-40	27
QL1	-60	27

According to EN 10025-6 (2004) + A1 (2009)

DELIVERY CONDITIONS

Quenched and tempered (Q + T)

Quenched and tempered + shotblasted + primed

DIMENSIONAL RANGE

	Thickness (mm)
SIMAXX 700	100
SIMAXX 900	60
SIMAXX 1000	
	8
Width (mm) 2500	

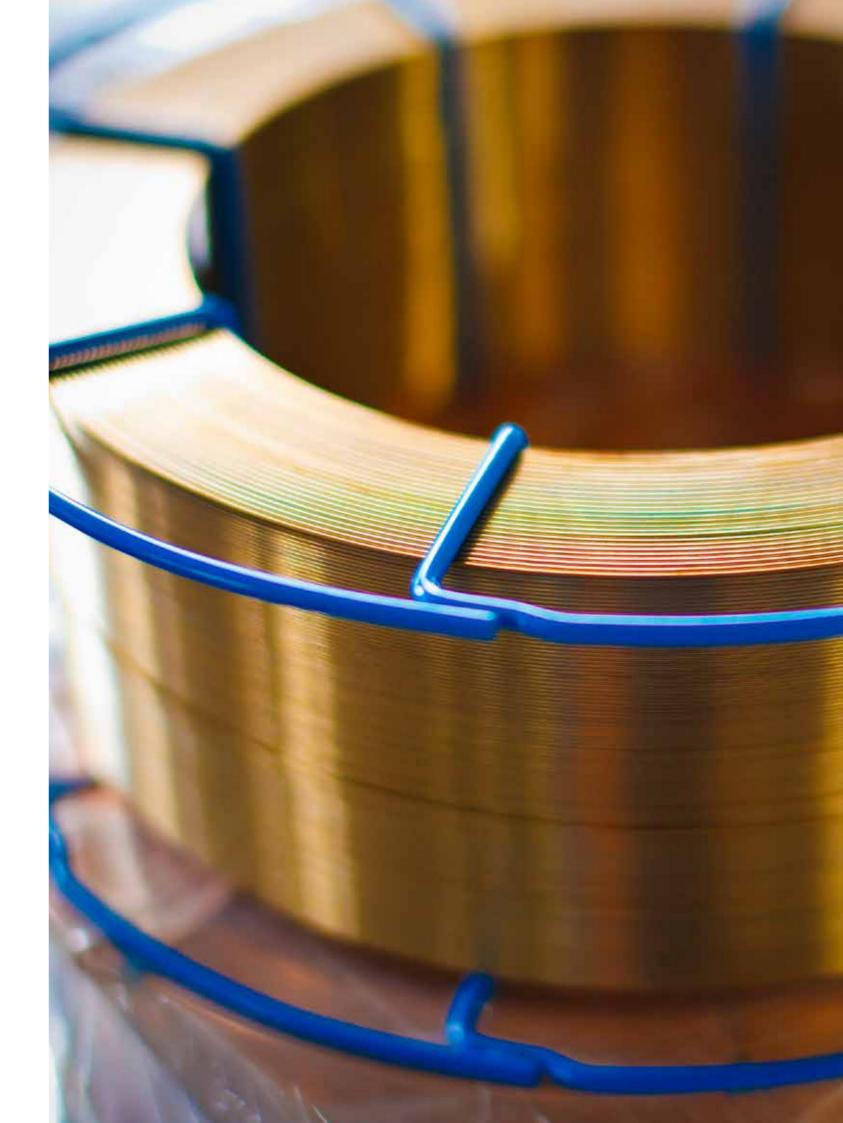
	Thickness (mm)	Width (mm)	Length (mm)
SIMAXX 700	8-100	1000-2500	2000-12000
SIMAXX 900	8-60	1000-2500	2000-12000
SIMAXX 1000	8-60	1000-2500	2000-12000

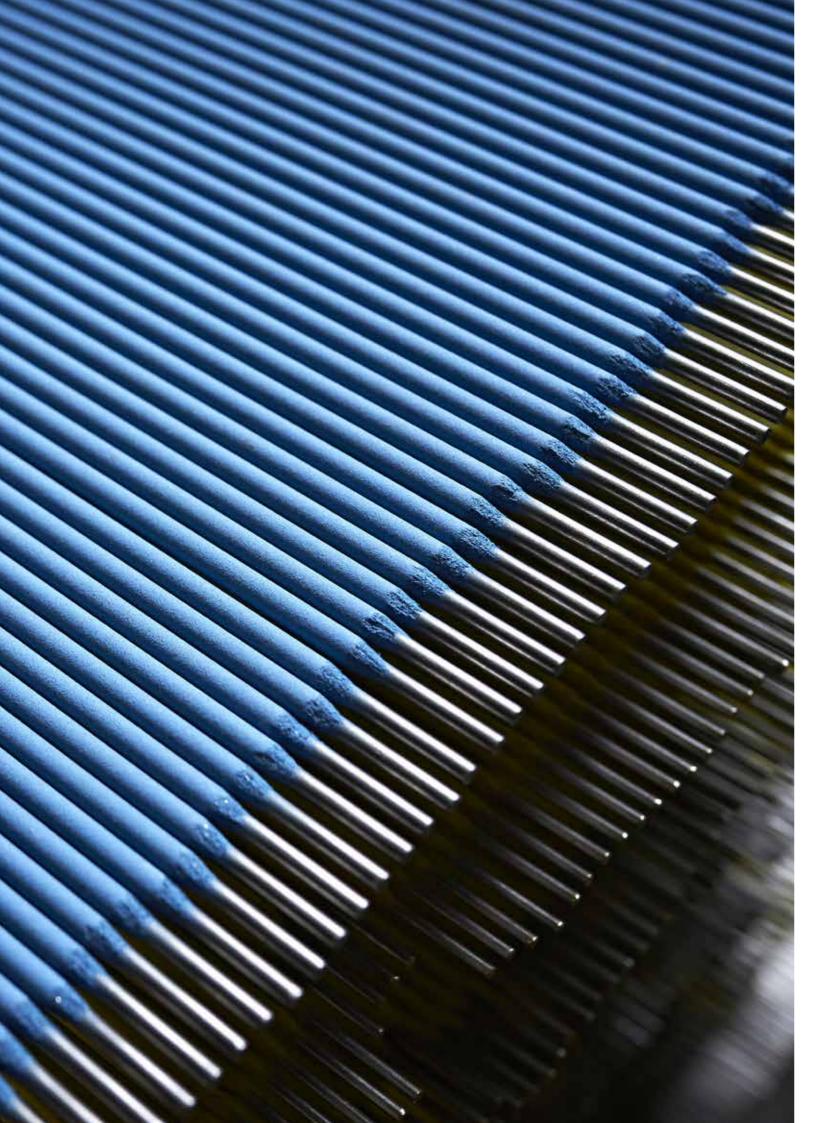
TOLERANCES

On request, narrower thickness, shape, length, width and flatness tolerances as according to EN 10 029 are available.

SURFACE PROPERTIES

According to EN 10 163/A-1.


Anticorrosive primer red oxide color upon request.


SIMAXX IN A WORKSHOP

BENDING

		R/t		W/t		
	Thickness	Transverse	Longitudinal	Transverse	Longitudinal	Springback
SIMAXX 700	8 ≥ t < 20	2,0	3,0	7,0	8,5	6-10
SIMAXX 900/1000	8 ≥ t < 20	3,0	4,0	8,5	10,0	8-12

Minimum recommended punch radius (R) and die opening width (W) for plate thickness (t), when the plate is being bent to 90° along the direction of rolling and at right angles to the direction of rolling – and also the corresponding springback.

WELDING SIMAXX

Welding materials / Welding	EN Designation	SIJ Elektrode	SIJ Acroni grad	de	
process	(EN 499, EN 757, EN 440, EN 758,	Designation			
	EN 12535, EN 12534, EN 760)				
			SIMAXX 690	SIMAXX 890	SIMAXX 960
Electrodes / MMAW	E 692Mn2NiCrMoB42	EVB 75	•		
		EVB 80	•		
	E 89AMn2Ni1CrMoB42	EVB 100		•	•
	E 89 4 ZB62 H5	EVB 100Extra			•
Flux cored wires / FCAW	T 89 4 Mn2Ni1CrMo BM3 H5	Filtub 38B		•	•
Flux cored wires / FCAW	T 69 6 Mn2NiCrMo B M (C)3 H5	Filtub 32B	•		
	T69 6 Mn2NiMo B M	Filtub 32M	•		
	T89 4 ZMM2 H5	Filtub 38M		•	•
Wires / GMAW, GTAW	Mn3Ni1CrMo	MIG 75	•		
	89 6M GMn4Ni2CrMo	MIG 90		•	•
	Mn4Ni2,5CrMo	MIG 95			•
SAW Fluxes / Wires	SA FB 1 55 AC H5	FBTT/Filtub 132	•		
		FBTT/Filtub 138		•	•

SIJ Acroni SIMAXX high strength heavy plates as high strength low alloyed steels (HSLA) with elevated yield strength have good weldability, but correct welding procedure should be followed.

Root-welding passes should be welded with softer filler materials (under matching), filling and cover passes with similar fine-grained welding materials- see the table.

When welding SIMMAX steels with unalloyed materials can be done using materials dedicated for unalloyed steels.

For welding Acroni SIMAXX steels, welding with low energy input is recommended, which involves an optimum welding current and welding with more passes. When welding with toon high energy input can result in an increase of crystal grains in the HAZ (heat affected zone), which greatly deteriorates mechanical properties.

Our experts recommend welding immediately after the welding edges have been finished, to avoid contamination. Coated electrodes must be dried before welding.

MAXIMUM RECOMMENDED PREHEAT TEMPERATURE

Maximum recommende	d preh	eat ten	nperatu	ıre [°C]														
	8	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
SIMAXX 700	Rooi	Room temperature			75 100													
SIMAXX 900	75	75			100				Not	availab	le in th	is thick	ness ra	nge				
SIMAXX 1000	75*	100																

^{*} For thicknesses up to 13mm | Data from the table is applicable to single plate thickness when welding with a heat input of 1.7 kJ/mm. | The consumables determine the preheating temperature if its carbon equivalent is higher than that of the plate | Room temperature is approx 20°C

MAXIMUM RECOMMENDED INTERPASS TEMPERATURE

Maximum recommended interpass temperature [°C]					
SIMAXX 700	225				
SIMAXX 900	150–175				
SIMAXX 1000	150–170				

QUALITY DRIVEN

We test each plate to ensure consistent quality you can rely on.

TESTING AND CERTIFICATION

Mechanical properties are measured on each plate according to EN ISO 6506-1 or EN 10003-1. Tests are performed in an accredited in-house testing laboratory. Inspection certificate EN 10204/3.1 is issued for each delivery. By agreement, an inspection certificate EN 10204/3.2. by an independent inspection agency can be provided.

Additional ultrasonic testing according to EN 10160, A/SA435 OR A/SA578 can be performed.

CUSTOMIZED WELDING CONSUMABLES FOR SIDUR AND SIMAXX STEELS

MORE THAN JUST STEEL – HIGHER EFFICIENCY THROUGH SIJ WELDING SOLUTIONS

Within the SIJ Group we have developed special welding consumables to be used when welding SIDUR AND SIMAXX products. Long experience in the field of welding and expert knowledge enables us to offer more efficient welding solutions that can increase welding performance by up to 10%* and essentially reduce the costs of production for our clients.

SIJ Group welding consumables produced by SIJ Elektrode are the perfect solution for welding SIJ Group steel products. Our welding consumables have been carefully developed, taking the characteristics of SIJ Group steel into consideration. As a result, we are able to offer optimization and cost reduction for your welding process. Our welding solutions are suitable for even the most demanding industries and applications.

A smooth welding process and more precise welding flow results in a perfect joint welding structure.

* internal testing data

Our work is never truly done; we are a part of an endless process. This is symbolised by the three dots in our corporate logo, and the logos of each SIJ Group product and service brand. Three dots equals three values. Each one stands firmly on its own, and they all stand together, forever. As a sign of trust and quality, they symbolise our three main values, which define who and what we are.

CONTAIN SLOVENIAN STEEL

SIJ Group

Gerbičeva 98 1000 Ljubljana www.sij.si